Interference in hyperbolic space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic Space

Radial lines, suitably parameterized, are geodesics, but notice that the distance from the origin to the (Euclidean) unit sphere is infinite. This model makes it intuitively clear that the boundary at infinity of hyperbolic space is Sn−1. Hyperbolic space together with its boundary at infinity has the topology of a closed ball, and isometries of hyperbolic space extend uniquely to a homeomorphi...

متن کامل

Universal Approximator Property of the Space of Hyperbolic Tangent Functions

In this paper, first the space of hyperbolic tangent functions is introduced and then the universal approximator property of this space is proved. In fact, by using this space, any nonlinear continuous function can be uniformly approximated with any degree of accuracy. Also, as an application, this space of functions is utilized to design feedback control for a nonlinear dynamical system.

متن کامل

Hyperbolic Geometry: Isometry Groups of Hyperbolic Space

The goal of this paper is twofold. First, it consists of an introduction to the basic features of hyperbolic geometry, and the geometry of an important class of functions of the hyperbolic plane, isometries. Second, it identifies a group structure in the set of isometries, specifically those that preserve orientation, and deals with the topological properties of their discrete subgroups. In the...

متن کامل

Magnetic bags in hyperbolic space

A magnetic bag is an abelian approximation to a large number of coincident SU(2) BPS monopoles. In this paper we consider magnetic bags in hyperbolic space and derive their Nahm transform from the large charge limit of the discrete Nahm equation for hyperbolic monopoles. An advantage of studying magnetic bags in hyperbolic space, rather than Euclidean space, is that a range of exact charge N hy...

متن کامل

Regular Honeycombs in Hyperbolic Space

made a study of honeycombs whose cells are equal regular polytopes in spaces of positive, zero, and negative curvature. The spherical and Euclidean honeycombs had already been described by Schlaf li (1855), but the only earlier mention of the hyperbolic honeycombs was when Stringham (1880, pp. 7, 12, and errata) discarded them as "imaginary figures", or, for the two-dimensional case, when Klein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review A

سال: 1998

ISSN: 1050-2947,1094-1622

DOI: 10.1103/physreva.57.1529